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The question regarding a possible correlation of the time scales of primary and secondary relaxations in
supercooled liquids is formulated quantitatively. It is shown how this question can be answered using spin-
lattice relaxation weighted stimulated-echo experiments, which are presented in an accompanying paper
[A. Nowaczyk, B. Geil, G. Hinze, and R. Boshmer, Phys. Rev. E 74, 041505 (2006)]. General theoretical
expressions relevant for the description of such experiments in the presence of correlation effects are derived.
These expressions are analyzed by Monte Carlo integration for various correlation scenarios also including
exchange processes, which are the hallmark of dynamical heterogeneity. The results of these numerical simu-
lations provide clear signatures that allow one to distinguish uncorrelated from differently correlated cases.
Since modified spin-lattice relaxation effects occur in the presence of nonexponential magnetization recovery,

it is shown how to correct for them to a good approximation.
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I. INTRODUCTION

The complex dynamics of supercooled liquids involves a
number of different relaxation processes [1]. The most
prominent one is the structural relaxation that accompanies
the viscous slow-down. The corresponding molecular motion
is characterized by an overall isotropic reorientational dy-
namics as well as by considerable translational displace-
ments [2,3]. In addition to this primary relaxation which is
slow near the calorimetric glass transition temperature T,
secondary relaxations are practically always present. In
frequency-dependent dielectric measurements of glass-
forming systems, they often show up as high-frequency
peaks and likewise as the corresponding features in
temperature-dependent measurements. One of the important
discoveries, reported by Johari and Goldstein in 1970, was
that such secondary relaxations are also found in molecularly
rigid glass formers and hence in such cases they are not
simply a consequence of intramolecular flexibility [4]. A
more recent finding is that also supercooled liquids devoid of
well-defined Johari-Goldstein (JG) peaks can develop such
features out of the so-called excess wing during extended
aging experiments close to T, [5,6]. This conclusion was
further vindicated in a rather different approach by using
systematic measurements of a series of polyalcohols [7]. In
contrast to the primary relaxation, the JG process is charac-
terized by a small-angle dynamics in which the molecules
are not performing an isotropic motion [8].

In Fig. 1 we summarize how the various relaxation fea-
tures typically look in a dielectric loss spectrum of a glass
former for which the JG relaxation is not particularly pro-
nounced. This schematic representation leaves open whether
or not the excess wing and the JG relaxation stem from the
same molecular excitations, a question which is not generally
agreed upon in the literature. More relevant in the present
context is the fact that important aspects of these relaxation
features can be observed using virtually any technique cou-
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pling to the structural excitations in the glass former. This
holds true even if these techniques operate at essentially a
single measuring frequency such as nuclear magnetic reso-
nance (NMR). As an example in Fig. 1 we refer to the spin-
lattice relaxation rate 1/7;, which can be viewed as being
proportional to the loss part of the susceptibility at the Lar-
mor frequency [9,10]. Using spin-lattice relaxation measure-
ments, this loss part is usually, but indirectly [11], mapped
out by sweeping external variables such as temperature or
pressure [12]. Such approaches assume, however, that the
relation between the molecular relaxation frequency, or the
inverse correlation time 7!, and the temperature T (or pres-
sure) is known. Time-temperature equivalence [13], if valid,
forms the basis of what is commonly referred to as time-
temperature superposition. It is quite often exploited not only
in nuclear magnetic resonance (NMR) but also in, e.g.,
mechanical spectroscopy [14].

There are only few experimental data [15,16] and theoret-
ical considerations [17] directly addressing a correlation
of the different motional processes. This may appear surpris-
ing in view of the fact that various experimental observations
are available that may be linked to this question. In an
early experiment, Williams [18] reported that upon the appli-
cation of pressure to a supercooled polymer the strength of
its « relaxation increases at the expense of that of the B
process. This and other observations [19], e.g., that in the
glassy state the strength of the 8 process in small-molecule
glass formers depends on the thermal cooling history [4],
suggest that the two processes are in some way linked with
one another.

One of the purposes of the present work is to address
most directly the extent to which « and S relaxations may be
correlated in viscous liquids, by drawing upon the knowl-
edge that the primary [20-23] as well as the secondary pro-
cesses [24-26] exhibit a heterogeneous dynamics. This im-
plies the existence of a distribution of correlation times.
Consequently we are allowed to associate distributions of

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.74.041504

GEIL, DIEZEMANN, AND BOHMER

AT -T,)

loge"

logw

FIG. 1. (Color online) Schematic dielectric loss spectrum &”(w)
(lower and left axes) adapted from Lunkenheimer et al. [5]. The
main peak is a sketch of the primary relaxation while the additional
contributions at high frequencies are meant to correspond to the
so-called excess wing. Reference [5] provides also a sketch for a
glass former with a more pronounced JG process, which here is
indicated by the dashed line. Information similar to that provided by
&"(w) may be obtained from the measurement of 1/7 at a single
frequency (upper and right axes) if the temperature axis is properly
scaled. Using the considerations of, e.g., Refs. [9,10] one may
define the dielectric analog of a spin-lattice relaxation rate
via 1/T8oc[e"(w)+48"(2wp)]/ (w Ag) if details such as the
different angular sensitivities of dielectric and NMR experiments
are disregarded. In the above equation Ae designates the amplitude
of the dielectric relaxation strength. The arrow in the figure is
meant to provide a rough but experimentally relevant indication of
the relation of the Larmor frequency relative to the dielectric loss
peak near 7.

correlation times G(7) with data such as the one sketched in
Fig. 1.

This paper is organized as follows: First, in Sec. II, we
describe the idea leading to an NMR experiment which si-
multaneously is sensitive on short- and on long-time scales.
Then, in Sec. III, we discuss the occurrence of a modified
spin-lattice relaxation in these experiments and outline a use-
ful approximate correction. In Sec. IV we derive some gen-
eral theoretical analytical expressions relevant for the de-
scription of our results in the presence of correlation effects.
This is followed, in Sec. V, by numerical simulations imple-
menting these expressions and generalizations thereof,
including dynamical exchange processes. Finally, we discuss
various correlation scenarios for the comparison with experi-
mental results (that will be presented in Ref. [27], see
also Ref. [28]) and then summarize our main findings in
Sec. VI.

II. PRINCIPLES OF SPIN-RELAXATION WEIGHTED
STIMULATED-ECHO SPECTROSCOPY

To illustrate the idea on which our present experiment is
based, distributions of «a and S relaxation times are plotted in
a schematic fashion along two orthogonal axes in Fig. 2. This
two-dimensional representation allows us to visualize pos-
sible correlations among various parts of the distributions in
a simplifying fashion. Taking, for the time being, the parts of
the distributions as discrete quantities possible correlations
among them can be expressed by marking the corresponding
box in the grid as sketched in Fig. 2. In the more quantitative
description that we will provide further below, this picture
will be helpful in defining a correlation matrix. One of the

PHYSICAL REVIEW E 74, 041504 (2006)

Gy b
“p 4 e \ >
s T’u
.": N S
+ ~
/,M 34 ,‘
7
/ VA
S /) N
- // N
S a
Gg / y
-1

FIG. 2. (Color online) Schematic distributions of correlation
times for a glass-former exhibiting « and S relaxations are plotted
on two orthogonal axes. The filled square in the grid provides a
means to indicate that some part of the a spectrum is connected
with some part of the B spectrum. The curved line indicates but
one possible scenario for which the connectivity spans the entire
distributions. The distributions corresponding to the « and the
B process are drawn separately because they correspond to different
prefactors K [cf. Eq. (1)], even when referring to the same
correlation time.

most interesting questions in this context is whether and then
how the entries of such a matrix should be chosen. Various
qualitatively different scenarios are possible. A description of
independent relaxation processes may be achieved by choos-
ing the matrix elements in a random fashion. Correlated sce-
narios include the one depicted in Fig. 2 in which the “diag-
onal” curve connects the slow part of the $ distribution with
the slow part of the « distribution. Of course, one may also
envision that slow contributions of the « distribution are
connected with the fast parts of the [ distribution in an
“antidiagonal” way.

A. Sensitivity to fast motions

Obviously an experimental method is needed which is
sensitive on the scale of the primary as well as on that of the
secondary relaxation. In principle measurements of spin-
lattice relaxation times 7| can provide such a global
sensitivity. This is because 1/7) is proportional to the
fluctuation amplitude characterizing the molecular motion
(more precisely the corresponding nuclear interaction tensor)
at some frequency w. However, in conventional NMR ex-
periments the fluctuation spectrum, also called spectral
density J(w), is probed at a single frequency, the Larmor
frequency ey . It turns out that the spin-lattice relaxation rate,
here written as

1
;1=K[J(wL)+4J(2wL)], (1)
is most sensitive to time scales 7=0.61/w; [29], which for
typically used external magnetic fields corresponds to a few
nanoseconds. However, if the nuclear coupling constant K
[30] and the spectral form of G(7) and hence J(w;) are
known, then 7 can be computed. In the so-called slow-
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motion regime w; 7> 1, i.e., for temperatures far below the
T, minimum, Eq. (1) reduces to [31]

1 4K

T, 5’7

2)

This means that under these circumstances spin-lattice relax-
ation times and molecular correlation times are proportional
to one another. Typical deuteron coupling constants K, which
can be estimated from the width of the corresponding NMR
spectra, are of the order of (27X 0.1 MHz)?. Taking
=27 X 100 MHz, it is clear that the proportionality constant
4K/(5wf) in Eq. (2) is of the order of 107°. In other words,
molecular dynamics taking place on a time scale of a few
microseconds under circumstances implied by Eq. (2) lead to
spin-lattice relaxation times of the order of a few seconds
[32]. Primary correlation times of the order of seconds or
longer would thus correspond to 7| being much longer than
experimentally observed. This argument shows that close to
T, spin-lattice relaxation cannot be dominated by the «
process under these circumstances.

Unfortunately the contributions to 7} originating from dif-
ferent parts of a distribution function cannot, in general, be
disentangled in a straightforward manner. However, in ap-
propriate temperature ranges (cf. the arrow in Fig. 1), the
contribution of the primary relaxation to 1/7 is reduced by
typically one to three orders of magnitude with respect to
that of the secondary processes. It is in this temperature re-
gime in which the heterogeneity of the B-process could be
identified as follows. It is theoretically well established that
each ensemble of dynamically equivalent deuterons (com-
monly termed isochromat), relaxes in a single-exponential
manner [33], i.e., with a longitudinal relaxation rate R,.
Thus the experimental observation, made using deuteron
NMR [24,34], that the longitudinal nuclear magnetization
M(r) recovered in a nonexponential fashion implies the
existence of a distribution of spin-lattice relaxation times
and thus a distribution of secondary relaxation times. Due
to the former, the properly normalized time dependence
of the nonexponentially relaxing magnetization can be
written as

M@) = f V(T)e™"MdT, = f Pyo(R)e ™ "dR,.  (3)
0 0

Here V(T,) designates the normalized distribution of spin-
lattice relaxation times in a heterogeneous sample. On the
right hand side of Eq. (3), we give an equivalent formulation
using the a priori probability Pyo(R;) in terms of van Ka-
mpen’s notation [35]. Pyo(R,) reflects the unfiltered distribu-
tion of spin-lattice relaxation rates R,. The time dependence
experimentally observed for M(z) can often be described ex-
cellently by the empirical stretched-exponential function

M(t) = exp[- (t/T))'™"], (4)

using the stretching exponent v. In this case, the first moment
of V(T)) is given by
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FIG. 3. Sensitivity to the distribution of secondary relaxation
times is only possible for »>0. However, the low-temperature limit
of the present technique will usually not be given by the onset of
spin-diffusion which leads to a decrease of v, but by the condition
7,=~T) [here 7, is the time scale on which the orientational corre-
lation function, Eq. (7), decays]. This is because if 7,5 T then 7,
can not be determined reliably from (noisy) experimental data.
These constraints result in a quite small useful temperature range,
which is marked here by the shaded area. In this range 7, and the
primary relaxation time 7, will exhibit the same temperature
dependence.

: ) (5)

(T1>=f M(t)dt:il“<
0 I-v \1-v

Note that a T, distribution (here parametrized by »>0) can
only be observed if the average relaxation time (7)) is
shorter than the primary relaxation time. If this is not the
case, i.e., if 7,5>(T}), then dynamic exchange processes
within the 7 distribution restore ergodicity. Such exchange
processes were directly observed using reduced four-
dimensional NMR and similar techniques [20,36]. It is im-
portant to keep in mind that the same dynamic exchange
processes are relevant [37] for the primary relaxations and
for the spin-lattice relaxations [24,38]. The consequent aver-
aging of the magnetization recovery, resulting from an
efficient exchange, can be recognized from v=0.

The temperature dependence of v as it is typical for su-
percooled liquids is shown in Fig. 3 in a schematic fashion.
At high temperatures, dynamical averaging leads to v=0
down to about the point at which the strongly temperature-
dependent trace of the primary relaxation time 7, crosses that
of T,. The relatively weak temperature variation of 7 essen-
tially reflects that of 75 in the sketched temperature range.
For lower temperatures for which averaging becomes
less effective, v first increases until spin-diffusion sets in and
then renders the magnetization recovery more and more
exponential [39]. Thus, the sensitivity of the spin-relaxation
experiment for secondary relaxations can only be exploited
in the narrow temperature range marked by the shading in
Fig. 3.

B. Combination with slow motions

In order to be able to extract information about a possible
connection of primary and secondary relaxation processes,
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FIG. 4. The spin-relaxation weighted stimulated-echo spectros-
copy has the structure of a pump (or modify or select), wait, and
probe experiment. In its first part, the magnetization is destroyed
using a saturation sequence; in the second part, each magnetization
isochromat can build up with its own rate and enter the third part
with the amplitude it has reached at the end of the time interval 5.
Finally, in the third part, the rotational decorrelation of the various
isochromats is measured with the weighting acquired during tg. In
the limit 53 >(T) the conventional rotational correlation function is
recovered.

we may combine the spin-relaxation experiment with a
technique which is sensitive to the slow dynamics, e.g., fol-
lowing the scheme outlined in Fig. 4. In the first part of the
experiment, sketched there, a nonequilibrium magnetization
state is created, in our case by employing a saturation se-
quence [40] in order to destroy the total magnetization. Dur-
ing the subsequent time interval fg, the various magnetiza-
tion components associated with V(7) will build up again at
various rates. According to Eq. (2) those components char-
acterized by the fastest correlation times will recover most
rapidly. If the build-up interval is sufficiently long, then all
magnetization components will enter the subsequent detec-
tion block with their proper weight given by V(7). However,
if 15 <(T), as sketched in Fig. 4, those molecules with the
shortest 7 will contribute most to the subsequently detected
signal. The magnetization at the end of the time interval g,
i.e., the one which enters the second part of the experiment,
reflects a modified distribution of rates,

PT\O(RMB) =[1 -exp(= Rytp)]Pyjo(R}). (6)

The main advantage of the experimental protocol, on which
the present theoretical analysis is based, arises from the abil-
ity to study the primary process in the second part of the
experiment, however, starting from different initial condi-
tions. The latter are adjusted by the time interval #5 and
hence by an accordingly filtered distribution of spin-lattice
relaxation rates which in turn depend on the secondary
processes.

In order to monitor the ultraslow motions associated with
the primary relaxation, one could, e.g., measure absorption
spectra [41] or, as we do in the present work, rotational cor-
relation functions involving the quadrupolarly perturbed pre-
cession frequencies wQ(t)=%6Q [ 3 cos?6(r)—1)]. The latter
depend on the molecular orientation as characterized by the
polar angle @ in the usual fashion. Furthermore, the aniso-
tropy parameter dy=(3/4)(e*qQ/%) is proportional to the
square root of the coupling constant K. Two-time autocorre-
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lation functions involving wy(f) were measured using a
three-pulse stimulated-echo sequence. In the limit 5 — % or
without any initial saturation these functions were exten-
sively discussed in the literature [2,42]. The cosine variant
which is employed here may be written as

Fy(ty,1,,) = {cos[wg(0)t,]cos[ wy(1,)1,]) (7)

if we neglect spin-relaxation effects. Here the angle brackets
indicate the ensemble (and powder) average, t,, designates
the mixing time. The evolution time 7, is an experimentally
adjustable parameter which governs the angular sensitivity of
the measurement [2]. The stimulated-echo technique was of-
ten used to extract motional correlation times in the range
spanning from about milliseconds to seconds. The decay
time of the cos-cos function appearing in Eq. (7) will be
called here 7,. For supercooled liquids 7, is closely related to
7, and distributions of 7, reflect the ones in 7,. We restrict
ourselves to relatively large evolution times for which 7, is
practically independent of #, and each angular jump leads to
a complete loss of correlation [43]. In this limit the average
7, is smaller than the average 7,. This fact, which is due to
the presence of relatively small jump angles in supercooled
liquids, is also schematically incorporated in Fig. 3.

In supercooled liquids F, typically follows a stretched
exponential form. In various previous experiments on a host
of different disordered systems, it was shown that stretched-
exponential behavior arises from dynamically distinguish-
able subensembles [44]. In the presence of a heterogeneous
scenario, one may characterize each isochromat in viscous
liquids by an exponential function [45].

In Eq. (7) the spin-relaxations occurring during ¢, and
during ¢,, were neglected. To our knowledge heretofore they
were only introduced as additional, empirical damping
factors so that the right-hand side of Eq. (7) reads

FZ(tp’tm) = <COS[wQ(O)tp]COS[wQ(tm)tp]>
Xexp(=t,/T,)exp(-2t,/T,), (8)

if we choose to write the damping factors as exponential
decays. Since in the accompanying experimental paper [27]
all measurements are performed at constant ¢, the damping
due to the spin-spin relaxation, parameterized here by 7>, is a
constant factor which we will not consider further.

The factorization of the correlation and the damping terms
expressed by Eq. (8) implies either that spin-lattice relax-
ation is exponential, as is the case for most stimulated-echo
experiments reported in the literature [46], or that primary
and secondary (and hence spin-lattice) relaxation times are
uncorrelated. Since our experiments are designed to check
whether or not such correlations exist, we cannot a priori use
the factorization implied by Eq. (8). Situations in which
correlations exist are treated in Sec. IV, below.

Before closing this section we note that it is possible to
turn the spin-lattice relaxation weighted stimulated-echo ex-
periment upside down. This means that one can first select
slow contributions to the primary relaxation using the
stimulated-echo sequence and then probe their spin-lattice
relaxation. In fact, such an experiment was performed some
time ago for amorphous polystyrene [15]. It was suggested
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that different effective spin-relaxation times could be mea-
sured if the primary relaxation was low-pass filtered to
different extents [47].

III. CORRECTION FOR MODIFIED SPIN-LATTICE
RELAXATION

It is important to realize that the spin-lattice relaxation
filter described above has an effect on the subsequent decay
of the stimulated-echo decay, which takes place during the
mixing time f,, even if primary and secondary relaxations are
uncorrelated. Why this is so is most easily explained by as-
suming that during the mixing time the quadrupolar frequen-
cies in Eq. (7) do not change [48] so that only spin-relaxation
effects need to be considered. In the present section we will
adhere to this assumption for the sake of simplicity.

Via Eq. (6) the magnetization at the end of the build-up
time is due to a modified distribution of spin-lattice relax-
ation rates PT‘O(RI .tg)=[1—exp(=R,t)]Pyo(R;). In analogy
to Eq. (3), this gives rise to a modified spin-lattice relaxation
function

M (tg.t,,) = f [1 —exp(=Ryt5)]Pjo(R,)exp(~ Ryt,)dR, .
0

)

In the absence of molecular dynamics, this integral immedi-
ately yields a relaxation factor

M’ (tg,t,,) = M(t,) — M(tg +1,,). (10)

It is important to realize that it is not necessary to know the
distribution of spin-lattice relaxation rates Pyo(R;) to com-
pute M". Equation (10) shows how M" can be determined
from the independently measured spin-lattice relaxation
function M(z). In the presence of noise, i.e., when dealing
with experimental data, this determination has to be done
with great care. This is because M(z,,) and M(tgz+t,,) will be
similar in magnitude for specific combinations of 7,, and
and therefore the difference of the two quantities is very
sensitive to experimental uncertainties.

Equation (10) is instructive for situations in which the
correlation and the damping terms factorize [cf. Eq. (8)].
However, it is not clear to what extent it continues to hold
strictly if this simplification ceases to be applicable, e.g.,
when primary and secondary relaxations are correlated. Also
in view of the discussion given in Sec. V B below, even in
this situation Eq. (10) should be considered as a very useful,
albeit approximate correction when trying to remove spin-
relaxation effects from the experimental data that we will
present in Ref. [27].

IV. GENERAL THEORETICAL CONSIDERATIONS

For a more detailed theoretical treatment of the current
spin-lattice relaxation weighted stimulated-echo experiment,
it is convenient to start from a general description of the echo
amplitude function including correlation effects. In the cor-
responding experimental functions, which above were called
F,, all possible correlations, dynamical exchange processes,
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etc. are automatically included if present in the sample under
examination. For the theoretical functions, on the other hand,
it is clearly defined which effects are included and we will
use the symbol

S(IB’tp’tm) = j dwl f d(l)z J dTC f dR1P4‘0((,01,(U2, Tc,R])

X cos(w;t,)cos(wt,)[ 1 —exp(- R;tp)]
Xexp(— Ryt,,)- (11)

to denote a stimulated-echo function in this context. This
function depends on the four stochastic variables
=wp(0), wy=wy(t,), 7c, and R;. The latter two quantities
denote a correlation time 7~ and the spin-lattice relaxation
rate R, respectively. It is important to point out that in the
present context each quantity characterizes an individual iso-
chromat and it is understood that 7 is a measure of the time
scale of the a process and R, is related to the time scale of
the S process.

Furthermore, in order to compute the ensemble average
via the fourfold integral, we introduced the fourth-order joint
probability density Pyjo(w;,w,,7c,R;) of finding wy(0) be-
tween w; and w;+dw;, wy(t,) between w, and w,+dw,, and
analogously for 7- and R,. Note that the spin-relaxation ef-
fects, in the form exp(-R;f,,)—exp[-R,(tzg+1,)] [cf. Eq.
(10)], are now included in the ensemble average. In the fol-
lowing, we will discuss a few special cases of the general
expression, Eq. (11), which facilitate a relatively simple
theoretical treatment.

A. The uncorrelated case

If we assume that 7~ and R;, and hence 7, and Tp, are
uncorrelated, then we can factorize P4‘0(w1 ,wy,7c,RY)
=P;(w;,,,7c) Pyo(Ry). Under these conditions, Eq. (11)
becomes

S(IB,t,,,tm):JdwlfdwzfdTCP3O(wl,wz,TC)cos(wltp)

XCOS(wZIP)JdR1P1|O(RI)[1 —exp(=Rtp)]
Xexp(— Ryt,,). (12)

In the absence of spin-lattice relaxation, R; — 0, this expres-
sion reduces to Eq. (7).

If exchange processes are absent, we may use Bayes’
rule to split the joint probability Ps(w;,w,,7c)
=P2|](w,,w2|TC)P1‘O(TC) into the a priori probability
Pio(7c) [49] and into the conditional probability
Py (wy,w;|7c) of finding w; and w, under the assumption
that the correlation time has the value 7. In the context of
two-dimensional NMR, the probability P2|1(w1,w2|7-c) has
been thoroughly investigated [50]. It is also useful when
computing the two-time stimulated echo function S, for a
single, well-defined 7, e.g., by writing
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S2(tpvtm;TC):Jdwlfdw2p2|l(wlsw2|7-c)

X cos(w;1,)cos(wst,), (13)

and by performing the necessary integration over the
distribution of correlation times afterwards.

B. Simple correlation scenarios

In the general case, when 7- and R; could be correlated,
Pyjp does not necessarily factorize into lower-order joint
probabilities. But we may again use Bayes’ rule to obtain
[51]

Pyo(@1,0,7c,R1) = Pop(@1, 05| 7c, R ) P11 (7c|R 1) Pyjo(Ry).
(14)

Here P1‘1(7C|R1) expresses in a well-defined way the
connection between 7 and Ry. Pyy(7c|R;) can be regarded
as the continuous form of what in connection with Fig. 2 was
alluded to as the correlation matrix. For simplicity we
assume that R,=f(7c) is a deterministic (rather than a
stochastic) function of 7¢ such that

PI\I(TC|R1)=5[TC_f_l(RI)], (15)

where 6 is Dirac’s delta function. For correlated scenarios
Pyo(7c) and Pyjp(R,) can mutually be expressed by one an-
other. If R;=f(7¢) is a monotonous function, then the trans-
formation connecting the two distributions is simply given
by Pyo(Ry)dR,=Pyo(7c)d7c. In general, however, we have
to sum over the n monotonous segments of f(7¢) so that the
transformation can be written as

-1

df(Tc)

dTC

(16)

P1|0(R1) = E Pl\o(Tc)
n Tg’)=j;1(Rl)

Here j;l(Rl) is the nth (real) root of f(7-)—R;=0 and
the summation is performed over all of these roots. Inserting
Egs. (14)-(16) into Eq. (11) after integration over R,
yields

S*(IB,tp,tm)=fd’rcfdwlfda)2P2|1(w1,w2|TC)COS(w1tp)
Xcos(w,t,)[ 1 = exp(= f(7c)tg) Jexp(= f(7c)1,,)

df(re) |7
x> Pio(7c) flze)

dTC

(17)

Of, ®)

In order to evaluate this expression, we will use the simpli-
fying assumptions (i) that the subintegrals S,(w;,w,; 7¢) [cf.
Eq. (13)] appearing indirectly in Eq. (17) decay exponen-
tially for a suitably chosen subensemble and (ii) that the
spin-lattice relaxation of a suitably chosen subensemble
proceeds exponentially as well. Then for certain distribution
functions Pyo(7c) and certain functional forms for f(7c)
Eq. (17) may be solved analytically if exchange processes
are absent. To allow for a larger flexibility, in the following
section we will solve Eq. (17) by numerical Monte
Carlo integration. Among the scenarios we treat are the
functions
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fc/Tc positive correlation

J(7e) ={ ; (18)

faTc negative correlation

which connect 7 and f(7c)=R,. In the last equation f has
been assumed to take a very simple form involving the
factors fc and fa [52]. More complicated scenarios will be
considered below.

V. STOCHASTIC SIMULATIONS

In this section we will provide details concerning the nu-
merical implementation of the above considerations. In addi-
tion, the simulation presented here allows us to include the
effect of dynamical exchange effects in a relatively simple
fashion. By dynamical exchange processes, we mean that a
given particle, or a suitably chosen isochromat, can change
its time constant 7- within the distribution of correlation
times, Pjo(7¢), and likewise R; can change within its distri-
bution, Pyo(R). As noted above, the primary as well as the
spin relaxation are governed by the same exchange process.
Therefore, these exchange processes are not only defined by
the same exchange rate, «, but in our simulations they will
also take place simultaneously.

In the experiments the buildup of the magnetization that
follows the saturation is most conveniently described by a
distribution of spin-lattice relaxation times 7' rather than by
a distribution of rates R, [38]. Consequently, in order to
mimic the experimental situation as closely as possible, the
simulations will be formulated in terms of Py(7;) rather
than of Py(R;).

A. Algorithm

For the simulation of dynamic exchange processes, we
consider a large number N of isochromats. Like above, we
call an ensemble of dynamically equivalent particles, spins,
etc. an isochromat. For the purpose of our simulations, we
will consider the isochromats, numbered by the index k, as a
stochastic process ék)(t)=[rg{)(t) ,Tﬁk)(t)]. This means that at
a given time the state £¥(¢) is defined by the two variables
Tg ) and T<1k>. The first of them characterizes the time constant
of the a process and the second is related with the time
constant of the 8 process. Furthermore, we assume that the
state variable &X(7) changes discontinuously at discrete

points in time given by tgk)e{t(()k)=0,t(lk),...,t§;k)}. Hence
the lifetime of a state, which is subject to an exchange pro-
cess, 1S Atl(.k)ztl(.k)—tl(f)l. During the ith lifetime of a state,
the value of Tg‘) and T(lk) are constant and denoted as T(Ck)l
and Tﬁ, respectively. Assuming that the exchange process is
Markovian, the corresponding distribution of lifetimes is
L(At)=k exp(—«Ar) [35]. Note that these exchange
processes have no effect on the decay of the orientational
correlation function in our simulations, since in the chosen
algorithm the exchange does not affect the orientational
motion at all.

In Fig. 5 we sketch the trajectory of an isochromat. When-
ever the temporary lifetime of a state expires, i.e., at the time

tl(.k), a new random life time is chosen from L(Af) and new
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FIG. 5. Sketch of a trajectory of an isochromat k. The
two-dimensional state variable &(¢)=(7c(z),T,(¢)) and the corre-
sponding two-dimensional distribution D(&) from which & is drawn
are depicted in a simple one-dimensional representation. In the
present figure D(§) is meant to represent the distribution of all
isochromats.

values Tg) . and T(lk are drawn from the corresponding

distributions P, ‘O(TC) and P, ‘O(T ). If from these distributions
Tg‘ ) . and T<1k3 .1 are chosen independent of one another, one
obtains what above was called the uncorrelated case. Corre-
lated scenarios arise if the choice of one of the variables fixes
the other one, completely or at least to some extent.

Using trajectories such as those depicted in Fig. 5, we can
construct the nuclear polarization of each isochromat during
the time intervals tg and 7,,. For 0 <7<ty the only change in
spin polarization originates from the recovery of the equilib-
rium magnetization via 7, relaxation. Within the time inter-
val Az, the state of the kth isochromat is then characterized
by the constant value 7“ and, as above, we assume that
the polarization of a smgle isochromat is acqu1red exponen-
tially, i.e., its change is proportional to exp(— t/T( ). Thus in

the time interval tn <t<t(k) the kth 1sochromat accumu-

1’
lates a polarization exp[—(t—tflk))/ T<1kzl ,1] and the total polar-

ization accumulated from the beginning of the experiment is

p(0)=1-1 T expl- AT pexpl- (e - £0)/T1),1.

i=1

(19)

Equation (19) is valid as long as t=<1z. At the end of the
build-up time, the polarization p(()k)(tB) is obtained which is
used as the starting polarization of the kth isochromat in the
second part of the simulation, i.e., during the mixing time ¢,,.
In this part we have to implement not a build up but a decay
of the nuclear polarization due to spin-lattice relaxation and
more importantly we have to include the effect of the «
relaxation. In accord with the conventions used in the experi-
mental protocol, the time variable ¢ is restarted at the begin-
ning of the mixing time. Therefore during the fraction of
Atik) which ranges from the end of the build-up interval into
the mixing interval the polarization decays with
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pN(0) = i (tg)exp(= /T, Dexp(=1/7), ). (20)

Since we focus on relatively large evolution times, T(C) may

be interpreted as the effective decay time of the orientational
correlation function. Therefore the decay in each interval
may be characterized by an exponential decay.

As illustrated in Fig. 5, we used a consecutive numbering
of the time intervals throughout the entire simulation proto-
col. Hence, in general, we can write the polarization during
t, as

P = pi )PP (Dp (1) (21a)

with
¢

[T expl-ar“rr)]

i=n+1

Rl

PP (1) =expl- (4%, - 15117, ]

n+l

Xexp[— (1 + 15 — (21b)

and

[T expl- Ad¥r7)]

i=n+1

(k)(f) =exp[- (tg:r)l - tB)/TgC)nH

Xexp[— (1 + 15— 1))/78,]. (21¢)
Here, in addition to the first, the last time interval At(ek) is also

singled out of the product, since in general it can terminate
after the mixing time is over (cf. Fig. 5). In Egs. (21),
one notes the complete analogy of the terms Tck describing
the primary process with those containing T( ) ; relating to the
spin-lattice relaxation. Of course also durlng the entire
build-up interval r the state variable £¥(¢) contains infor-
mation about the a-relaxation. However, since during fg the
T(Cl relaxation is irrelevant for the current experiment the

exponential terms containing TC have not been included in
Eq. (19).

B. Simulation results

The computations were carried out for typically N=10°
isochromats and we subsequently averaged the nuclear po-
larization curve for the build-up as well as for the mixing
times. At this stage, this gives us a set of data which can be
analyzed in full analogy to the experimental results. How-
ever, based on the simulation, we can additionally disen-
tangle the various decays contributing to the total nuclear
polarization, i.e.,

Eprl (22a)

(pr ()=
and

(Pr (1) = —E pR() (22b)

[cf. Eq. (21)]. Note that these functions are accessible via
simulations but not from NMR data obtained in a laboratory
experiment. Thus we can analyze separately the part
stemming from the spin-lattice decay as well as analyze
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separately the loss of orientational correlation, at least in the
case of the uncorrelated scenario. Furthermore, we can
implement various connectivities between 7', and 7 and thus
learn if and how the effective correlation times 7, depend on
Ig.

In order to mimic the situation in glass-forming systems,
we chose broad distributions of 7= and 7, which are best
represented on a logarithmic time scale. The shape of such
distributions is not known in detail from experimental data
and thus for convenience we decided to work with distribu-
tions which are constant on a logarithmic time scale, i.e.,

const for 10! s < 7o < 10° s

PllO(ln 7e) = 0 otherwise

(23a)

and

const for 10% s < T, < 10*s

P1|0(1n )= 0 otherwise

(23b)
On a linear scale, these distributions would appear with a
strongly asymmetric shape. Consequently the average time
scales are longer than corresponding to the middle of the
intervals just given. The parameter ranges chosen here
roughly correspond to typical experimental values. It was
checked that the modified spin-lattice relaxation, (pr, (1)), as
calculated using Eq. (22a) is indeed identical to what is ex-
pected from M™(¢) [cf. Eq. (10)] if the uncorrelated scenario
is assumed. It should be recalled that for correlated scenarios
the modified spin-lattice relaxation is only accessible in the
simulations and not in the experiment. Likewise, the modi-
fied correlation function, Eq. (22b), is not available from
experimental data.

In Figs. 6 and 7, we summarize the results of simulations
that were obtained for several scenarios. First we checked
numerically that 7, is independent on tg for the uncorrelated
scenario. This is expected because the total polarization

P =3 pROPRO = pr, NP (), ()
k

c

as measured during the mixing time for this case factorizes
into the terms defined in Eq. (22). From Fig. 6 it is seen that
for the uncorrelated scenario the decay times of the modified
correlation function, 7,, do indeed not depend on #z. In the
uncorrelated case, this results is independent of the shape of
the 7¢ and T, distributions.

For the simple correlated scenarios of Eq. (18), we started
from the same T distribution, Eq. (23b), and implemented
a positive correlation via 7-=f-T, and anticorrelation
with 7c=f,/T;. These relationships between 7- and T are
graphically depicted in the inset of Fig. 6 as cases 1 and 5,
respectively. The simulation data presented in Fig. 6 were
obtained with fo=10"" and f,=10’ s>. For both scenarios
the 7, values do depend on the build-up time ¢tz and show
opposite, albeit slightly asymmetric, trends. This makes it
easy to distinguish the positively correlated, the uncorrelated,
and the anticorrelated scenarios. The slight asymmetry is due
to the fact that the 7 filter acts from the longtime side upon
the asymmetric 7' distribution. For long build-up times the
weighting of the [ relaxation times does not matter and the
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FIG. 6. (Color online) Effective correlation times 7, as a func-
tion of the build-up time #g. The time constants were obtained from
Kohlrausch fits to the simulated polarization <PT,(f)PTC(f)>~ Since
the distribution of Eq. (23) was used, the fits were not always per-
fect as reflected by the error bars. The symbols represent the results
of the simulations as described in the text. The lines are drawn to
guide the eye. For the uncorrelated case (1) no dependence of 7, on
tg was found. Other scenarios, numbered 1 through 5, are depicted
in the inset, which shows the relation between 7 and 7 analogous
to the “connectivity matrix” depicted in Fig. 2. In the main figure
the corresponding numerical results for 7, are shown.

time scales 7, should approach each other, as is confirmed in
Fig. 6.

Only in the slow motion limit is the relaxation time a
monotonous function of the spin-lattice relaxation time. Let
us assume that some S relaxation times are faster than the
time scale 7,=0.61/w; corresponding to the 7'} minimum.
For typical external fields 7, is a few nanoseconds. We can
mimic this situation by a nonmonotonous relationship such
as that sketched as case 2 in the inset of Fig. 6. In physical
terms, the particular relationship chosen there implies that
25% of all molecules are faster than 7. In typical experimen-
tal situations this fraction will be much smaller. The numeri-
cal results in Fig. 6 show that even with this large fraction of
fast molecules the trend is dominated by the time constants
7c which are proportional to 7. The results of further non-
monotonous scenarios are included in Fig. 6 and show the
continuous evolution of the trends. Remarkably the asymme-
try as discussed above leads to a minor effect in 7, for the
V-shaped scenario 3.

For the correlated case 1, we checked how an increase of
the distribution widths alters the results. Choosing distribu-
tions with widths of four rather two decades, one sees from
Fig. 7(a) that 7, changes over a much wider range than be-
fore. Since qualitatively the trend is the same as for the nar-
rower distributions, we return to work with the narrow
distributions for the following examples.

The impact of an exchange process in the presence of
correlations was also tested. From the results depicted in
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FIG. 7. (Color online) The uncorrelated scenario is shown in
frame (a) for two different distribution widths. Results for positive
correlations and the impact of exchange within the 7 and 7 dis-
tributions are presented in (b) for distributions which are two de-
cades wide. The same but for negative correlations in (c). The dif-
ferent symbols correspond to different exchange rates «. The
numerical values of k=107% s or k=1072 s were chosen in order to
simulate the cases of negligible or significant exchange during ¢,
and/or tg, respectively.

Figs. 7(b) and 7(c), one recognizes that exchange within the
T, and 7 distributions reduces the strength of the trends but
does not change them. Thus our simulations suggest that
exchange can alter the trends only quantitatively but not
qualitatively. This is understandable since, depending on the
relation of « to the upper and lower limits of the initial
distributions chosen for 7- and for 7', we find various de-
grees of narrowing of these distributions. Such “motionally
narrowed,” effective distributions are well known, in particu-
lar in the context of magnetic resonance [53]. Also for the
uncorrelated scenario an increase of the exchange rate within
the 7 distribution reduces the absolute value of the
otherwise f5 independent 7, (not shown).

Finally we checked, for a positively correlated scenario,
the degree of deviation from the factorization given by Eq.
(24). In Fig. 8 we show examples for the time domain signals
(pTl(t)), (pTC(t)), and {p(t)) obtained with f-=10"" and the
distribution given by Eq. (23b). For the simulation presented
in Fig. 8 a long build-up time (15=10%s) and a small ex-
change rate (K=10_6 s) were chosen, since these values
should give rise to the most pronounced violation of the
factorization. However, it is seen from the near equality of
the “experimental” function (pTl(t)pTC(t» (solid line in Fig.
8) with the product (pTl(t)><pTC(t)> (dash-dotted line) that
even under these conditions the factorization of Eq. (24)
represents a rather good approximation.
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FIG. 8. (Color online) Correlation functions for a positively cor-
related scenario as simulated at the indicated 25 equally spaced
points on a logarithmic time axis, here mostly represented as lines.
The modified spin-lattice relaxation (pTl(t)) (black, dotted line) is
identical with the expectation based on Eq. (10). The correlation
function (pTC(t)) (red, dashed line), which is free from any spin-
relaxation effects, is not accessible in a laboratory experiment. The
experimentally relevant function <pTl(t)pTC(t)> (green, solid line) is
almost identical with the product (pT](t))(pTC(t» (blue, dash-dotted
line). This agreement shows that the factorization of Eq. (24) rep-
resents a good approximation.

VI. CONCLUDING REMARKS

To summarize, we first qualitatively developed the idea of
how to describe a possible connection of the primary with
the secondary relaxation near the glass transition of super-
cooled liquids. Then we proposed an NMR technique, spin-
lattice relaxation weighted stimulated-echo spectroscopy, in
order to implement the idea. Here first the longitudinal mag-
netization is destroyed, then allowed to at least partially
build up again in a fashion which is sensitive to the second-
ary relaxation, and finally tested on the time scale of the
primary relaxation. The time constants 7, that describe the
orientational decorrelation in the last part of this experiment
will then in general depend on the time 75 that was chosen
for buildup.

We also discussed in detail possible difficulties that can
arise when evaluating experimental data. Then we derived a
general theoretical framework in order to describe such ex-
periments quantitatively in the presence of correlation ef-
fects. Using numerical simulations we analyzed these expres-
sions and also generalized them to include the effect of
dynamical exchange processes. This allowed us to demon-
strate how, in a straightforward way, the dependence of 7, on
tg can be used to signal whether or not and then in which
way the time constants of the primary and the secondary
relaxation are related to one another. However, the various
dependences on the shape of the corresponding distributions,
on the exchange constant, and on various other factors that
we have discussed above enter into how 7, exactly depends
on tg. Since detailed information on these factors will
usually not be available from experiments it will be hard to
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interpret 7,(7) quantitatively beyond extracting the type of
correlation. In an accompanying paper, we show experimen-
tally for several glass formers that a positive correlation
between the spin-lattice relaxation times and the primary
correlation times exists [27].
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